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Abstract. We consider an interface between co-existing phases embedded in an 
inhomogeneous sample which consists of two (or more) grains separated by a grain 
boundary. Using microscopic considerations we show that, under appropriate circum- 
stances, the different inclination angles inside two grains are related by a law reminiscent 
of Snell’s in geometrical optics. The role of the refraction index is played by the surface 
stiffness coefficient. This picture breaks down for rigid interfaces and in situations where 
the grain boundary pins the interface. 

The behaviour of interfaces between two co-existing equilibrium phases in anisotropic 
systems, e.g. solids, have been the subject of many recent investigations, ranging from 
experiments [l] and Monte Carlo simulations [2] to theoretical studies [ l ,  3,4]. One 
particularly interesting aspect concerns the roughening transition [ 51 where interfaces 
aligned with special orientations (such as crystallographic axes) display critical 
behaviour. One characteristic of this behaviour lies in T, the energy per unit area, also 
referred to as the surface tension, which would be a singular function of the temperature. 
Other singular behaviour persists below the transition, so that T is not an analytic 
function of the orientation of interfaces. Studying interfaces tilted slightly away from 
alignment allows us to probe this type of singularity. 

In previous studies only homogeneous systems were used, in which an inclined 
interface is introduced by the choice of appropriate boundary conditions [4]. However, 
real experimental samples are inhomogeneous (polycrystalline), consisting of uniform 
regions (grains) separated by grain boundaries. In this work we analyse the behaviour 
of an inclined interface in the inhomogeneous Ising system which, we expect, models 
the experimental situation more realistically. Specifically, we consider a system which 
is made of two (or more) regions joined by the grain boundary, as shown in figure 1. 
In addition, we impose the boundary conditions in such a way that a tilted interface 
is forced across the whole system. Our purpose is to analyse the effect of inhomogeneity 
on the inclination of the interface in the two grains. The new result of this comment 
is that under appropriate circumstances, the rough interface behaves as a light ray 
refracted at the boundary between two optical media. Although in this study we 
concentrate on the ZD systems (line interfaces), appropriate generalisations to 3~ 

samples is straightforward (see below). 
Consider a 2~ square lattice of Ising spins, with boundary conditions as shown in 

figure 1. Such boundary conditions pin the interface by its endpoints at A = (0,O) and 
B = (L, m2), with L = L ,  + L 2 .  The interior of the sample consists of two diferent Ising 
systems, with nearest-neighbour ferromagnetic interactions J ,  and J 2 ,  respectively. In 
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Figure 1. Schematic illustration of the inhomogeneous model considered. The boundary 
conditions (denoted by + and -) around the edge force a tilted interface across the whole 
system. In the interior of the grains I and 11, the tilt angles are and 02.  In the absence 
of pinning at the grain boundary, the angles are related by the optical law of refraction. 

the particular case when Jl = J 2 ,  the boundary conditions force a tilted interface, with 
the average inclination angle 6 = tan-'( m2/ L), with respect to the horizontal axis. In 
the general case, when Jl # J 2 ,  the tilt in the two regions will be different, and must 
be described by two angles, O1 and B 2 ,  as shown in figure 1. The magnitude of Bi and 
B2 depends on the properties inside each system. Furthermore, the two inclinations 
are not independent, and the relation between them is obtained from thermodynamic 
considerations. 

In order to determine the relation between the two inclination angles, consider the 
partition function for the system in figure 1. Let us suppose that the interface at the 
grain boundary passes through the intermediate point ( L i  , ml) ,  and consider first, for 
simplicity, the case when the interface crosses the grain boundary only once. (Later, 
an interface with more than one crossing will be discussed.) Under these assumptions, 
the single point, ( Ll , m i ) ,  suffices to specify the position of the interface at the boundary. 
The total partition function, for the compound system of length L, with the interface 
crossing the grain boundary at a height M I ,  is 

Z(L, m , )  =%(L,, m,)%(L2, Imz-m,l) (1) 
where % ( X ,  Y )  denotes the partition function for the system with the interface pinned 
by its endpoints, (0,O) and ( X ,  Y ) ,  and inclined by the angle tan-'( Y / X ) .  Thus, the 
determination of Z(L, m , )  is reduced to calculation of % ( X ,  Y )  for the homogeneous 
sample. The values of X and Y are specified by (1). When the inclination angle 
tan-'( Y /X)  is small, %(X, Y )  has the Gaussian form [6,7] 

% ( X ,  Y )  = exp(-TX) ( - ) ' I 2  exp [ -XK ( x ) ~ ]  
2 7rx 2 x  

where T and K are the surface tension and the surface stiffness coefficient, respectively, 
of the inclined interface. Note that (2) is valid for small inclination angles, and we 
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assume X large, so that the finite-size corrections for T and K [ 6 , 7 ]  can be neglected. 
Using the result (2), with ( l ) ,  we obtain 

The precise form of T and K will depend on the specific model. In this work we 
consider Ising, solid-on-solid (SOS), and restricted solid-on-solid ( RSOS) models for 
interfacial properties. In these cases, the surface tension and the surface stiffness 
coefficient are known exactly [7]. Specifically, denote by Ki = Ji/ k,T, with i = 1,2, the 
nearest-neighbour interactions in the two subsystems. Then 

2(K, - KTL for the Ising model 

for the RSOS model 
for the SOS model (4) 

and 

sinh2(Ki-KT) for the Ising model 
for the SOS model 
for the RSOS model 

with the dual coupling K T defined by sinh 2Ki sinh 2 K I  = 1. 
The partition function Z (  L, M I ) ,  given by (31, depends on the intermediate interface 

height m, . This height is fixed by the variational requirement that the interfacial free 
energy is minimal. That is 

a 
-Z(L, m,)=O 
am, 

which yields 

This result can be further expressed in terms of the inclination angles as 

K~ tan el = K 2  tan 0 2 .  (8) 

For small angles we use the approximation tan Oi =sin Bi .  Therefore, equation (8) 
relating the two inclination angles is analogous to Snell’s law of geometrical optics: 
it describes the refraction of a light ray at the boundary of two optical media, with 
indices of refraction K~ and K ’ .  The minimisation ( 6 )  is equivalent to Fermat’s principle. 
Note also that the above procedure can be easily generalised to the situation when 
the sample consists of more than two grains. 

If the angles are not small, then the full anisotropic surface tension function T,( 0)  
comes into play. The generalisation of (8) is 

xwl(el)  = xW2(e2) ( 9 )  
where xwi( e)  = sin( e)Ti + cos( e ) [ a ~ ~ / a e ]  is nothing but the x coordinate of the Wulff 
shape associated with T~ [8,9]. To obtain the appropriate reduction, recall that 
K~ = T~ +d2.ri/aBZ and, for rough interfaces near a symmetry orientation, that T~ is analytic 
in 02.  Equations like (9) will be useful in constructing the general equilibrium shape 
of a bubble (of a third phase, e.g. disordered) embedded at the boundary of two solids. 
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There has been previous work [ 10,111 along these lines, though all assume special 
circumstances. 

The derivation leading to  (8) was performed under the assumption that the interface 
crosses the grain boundary only once. (For the RSOS model this assumption is always 
true since this model prevents vertical steps longer than one lattice spacing). Physically, 
this means the boundary is not pinning. In the case of pinning, e.g. when the couplings 
at the grain boundary are weaker than those in either of the two grains, the situation 
is more complicated. In order to gain energy, the interface will first reach the boundary 
at some height ma,  then run vertically along the grain boundary up to a height mb 
and, finally, extend from ( L , ,  m b )  to ( L ,  m2) .  Such an interface will not, in general, 
obey ‘Snell’s law’ (8). We believe that the proper description in this case can be 
formulated in the framework of the recently developed path integral decomposition 
expansion [12]. Furthermore, it may prove possible to use this expansion more 
generally [13] and derive rigorously the range of validity of the optical law (8) for 
rough interfaces. Within this formalism, the minimisation of the appropriate action 
is equivalent to minimising the free energy. 

We now discuss the tilt angles in the corresponding 3~ systems. In this case it is 
essential to distinguish the behaviour below and above the roughening transition 
temperature TR. For T > T R ,  the interface is rough and the partition function, in the 
absence of pinning, has the form [6] similar to (3). (In ZD systems the interface is 
rough for all T > 0.) Thus, an appropriate ‘Snell’s law’ can be derived for 3~ systems, 
provided care is taken to properly parametrise interface inclinations and introduce 
principal stiffness coefficients [6]. However, when T <  TR, the interface is rigid and 
the Gaussian form (3) is not valid. Recall that a rigid interface tilts in steps [ 5 ] ,  and 
the tilt angles will depend on the stepfree energy within each grain. In this case ‘Snell’s 
law’ is not expected to apply. 
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